Gaussian quadrature and weights listed as scrapeable data

This file consists of Gauss quadrature points and weights from n=1 to n=30. The blank spaces separate out the value of n, quadrature points, and weights. The points and weights are for the integration limits of [-1,1]. To convert to any finite integration limits [a,b], multiply the weights by (b-a)/2 and use (b-a)/2*QuadPoint+(b+a)/2 for the quadrature points. The data is also given in a scrapeable textfile at https://mathforcollege.com/nm/blog/QuadPointsWeightsUpTo30.txt

 1

0

2.0

 2

-0.57735026918962576450914878050196
0.57735026918962576450914878050196

1.0
1.0

 3

-0.77459666924148337703585307995648
0
0.77459666924148337703585307995648

0.55555555555555555555555555555556
0.88888888888888888888888888888889
0.55555555555555555555555555555556

 4

-0.86113631159405257522394648889281
-0.33998104358485626480266575910324
0.33998104358485626480266575910324
0.86113631159405257522394648889281

0.347854845137453857373063949222
0.652145154862546142626936050778
0.652145154862546142626936050778
0.347854845137453857373063949222

 5

-0.90617984593866399279762687829939
-0.53846931010568309103631442070021
0
0.53846931010568309103631442070021
0.90617984593866399279762687829939

0.23692688505618908751426404071992
0.47862867049936646804129151483564
0.56888888888888888888888888888889
0.47862867049936646804129151483564
0.23692688505618908751426404071992

 6

-0.93246951420315202781230155449399
-0.66120938646626451366139959501991
-0.23861918608319690863050172168071
0.23861918608319690863050172168071
0.66120938646626451366139959501991
0.93246951420315202781230155449399

0.17132449237917034504029614217273
0.36076157304813860756983351383772
0.46791393457269104738987034398955
0.46791393457269104738987034398955
0.36076157304813860756983351383772
0.17132449237917034504029614217273

 7

-0.94910791234275852452618968404785
-0.74153118559939443986386477328079
-0.40584515137739716690660641207696
0
0.40584515137739716690660641207696
0.74153118559939443986386477328079
0.94910791234275852452618968404785

0.12948496616886969327061143267908
0.27970539148927666790146777142378
0.38183005050511894495036977548898
0.41795918367346938775510204081633
0.38183005050511894495036977548898
0.27970539148927666790146777142378
0.12948496616886969327061143267908

 8

-0.96028985649753623168356086856947
-0.79666647741362673959155393647583
-0.52553240991632898581773904918925
-0.18343464249564980493947614236018
0.18343464249564980493947614236018
0.52553240991632898581773904918925
0.79666647741362673959155393647583
0.96028985649753623168356086856947

0.10122853629037625915253135430996
0.22238103445337447054435599442624
0.3137066458778872873379622019866
0.3626837833783619829651504492772
0.3626837833783619829651504492772
0.3137066458778872873379622019866
0.22238103445337447054435599442624
0.10122853629037625915253135430996

 9

-0.96816023950762608983557620290367
-0.83603110732663579429942978806973
-0.61337143270059039730870203934147
-0.32425342340380892903853801464334
0
0.32425342340380892903853801464334
0.61337143270059039730870203934147
0.83603110732663579429942978806973
0.96816023950762608983557620290367

0.081274388361574411971892158110524
0.18064816069485740405847203124291
0.26061069640293546231874286941863
0.31234707704000284006863040658444
0.33023935500125976316452506928697
0.31234707704000284006863040658444
0.26061069640293546231874286941863
0.18064816069485740405847203124291
0.081274388361574411971892158110524

10

-0.97390652851717172007796401208445
-0.86506336668898451073209668842349
-0.67940956829902440623432736511487
-0.43339539412924719079926594316578
-0.14887433898163121088482600112972
0.14887433898163121088482600112972
0.43339539412924719079926594316578
0.67940956829902440623432736511487
0.86506336668898451073209668842349
0.97390652851717172007796401208445

0.066671344308688137593568809893332
0.1494513491505805931457763396577
0.21908636251598204399553493422816
0.26926671930999635509122692156947
0.29552422471475287017389299465134
0.29552422471475287017389299465134
0.26926671930999635509122692156947
0.21908636251598204399553493422816
0.1494513491505805931457763396577
0.066671344308688137593568809893332

11

-0.97822865814605699280393800112286
-0.88706259976809529907515776930393
-0.73015200557404932409341625203115
-0.51909612920681181592572566945861
-0.26954315595234497233153198540086
0
0.26954315595234497233153198540086
0.51909612920681181592572566945861
0.73015200557404932409341625203115
0.88706259976809529907515776930393
0.97822865814605699280393800112286

0.055668567116173666482753720442549
0.12558036946490462463469429922394
0.18629021092773425142609764143166
0.23319376459199047991852370484318
0.26280454451024666218068886989051
0.27292508677790063071448352833634
0.26280454451024666218068886989051
0.23319376459199047991852370484318
0.18629021092773425142609764143166
0.12558036946490462463469429922394
0.055668567116173666482753720442549

12

-0.98156063424671925069054909014928
-0.9041172563704748566784658661191
-0.76990267419430468703689383321282
-0.58731795428661744729670241894053
-0.36783149899818019375269153664372
-0.12523340851146891547244136946385
0.12523340851146891547244136946385
0.36783149899818019375269153664372
0.58731795428661744729670241894053
0.76990267419430468703689383321282
0.9041172563704748566784658661191
0.98156063424671925069054909014928

0.047175336386511827194615961485017
0.106939325995318430960254718194
0.16007832854334622633465252954336
0.2031674267230659217490644558098
0.23349253653835480876084989892488
0.24914704581340278500056243604295
0.24914704581340278500056243604295
0.23349253653835480876084989892488
0.2031674267230659217490644558098
0.16007832854334622633465252954336
0.106939325995318430960254718194
0.047175336386511827194615961485017

13

-0.98418305471858814947282944880711
-0.91759839922297796520654783650072
-0.80157809073330991279420648958286
-0.64234933944034022064398460699552
-0.44849275103644685287791285212764
-0.23045831595513479406552812109799
0
0.23045831595513479406552812109799
0.44849275103644685287791285212764
0.64234933944034022064398460699552
0.80157809073330991279420648958286
0.91759839922297796520654783650072
0.98418305471858814947282944880711

0.040484004765315879520021592200986
0.092121499837728447914421775953797
0.13887351021978723846360177686887
0.1781459807619457382800466919961
0.20781604753688850231252321930605
0.22628318026289723841209018603978
0.23255155323087391019458951526884
0.22628318026289723841209018603978
0.20781604753688850231252321930605
0.1781459807619457382800466919961
0.13887351021978723846360177686887
0.092121499837728447914421775953797
0.040484004765315879520021592200986

14

-0.98628380869681233884159726670405
-0.92843488366357351733639113937787
-0.82720131506976499318979474265039
-0.68729290481168547014801980301933
-0.51524863635815409196529071855119
-0.31911236892788976043567182416848
-0.10805494870734366206624465021983
0.10805494870734366206624465021983
0.31911236892788976043567182416848
0.51524863635815409196529071855119
0.68729290481168547014801980301933
0.82720131506976499318979474265039
0.92843488366357351733639113937787
0.98628380869681233884159726670405

0.035119460331751863031832876138192
0.080158087159760209805633277062854
0.12151857068790318468941480907248
0.15720316715819353456960193862384
0.18553839747793781374171659012516
0.20519846372129560396592406566122
0.21526385346315779019587644331626
0.21526385346315779019587644331626
0.20519846372129560396592406566122
0.18553839747793781374171659012516
0.15720316715819353456960193862384
0.12151857068790318468941480907248
0.080158087159760209805633277062854
0.035119460331751863031832876138192

15

-0.98799251802048542848956571858661
-0.93727339240070590430775894771021
-0.84820658341042721620064832077422
-0.72441773136017004741618605461394
-0.57097217260853884753722673725391
-0.39415134707756336989720737098105
-0.2011940939974345223006283033946
0
0.2011940939974345223006283033946
0.39415134707756336989720737098105
0.57097217260853884753722673725391
0.72441773136017004741618605461394
0.84820658341042721620064832077422
0.93727339240070590430775894771021
0.98799251802048542848956571858661

0.030753241996117268354628393577204
0.070366047488108124709267416450667
0.10715922046717193501186954668587
0.13957067792615431444780479451103
0.16626920581699393355320086048121
0.18616100001556221102680056186642
0.19843148532711157645611832644384
0.20257824192556127288062019996752
0.19843148532711157645611832644384
0.18616100001556221102680056186642
0.16626920581699393355320086048121
0.13957067792615431444780479451103
0.10715922046717193501186954668587
0.070366047488108124709267416450667
0.030753241996117268354628393577204

16

-0.98940093499164993259615417345033
-0.94457502307323257607798841553461
-0.86563120238783174388046789771239
-0.75540440835500303389510119484744
-0.61787624440264374844667176404879
-0.45801677765722738634241944298358
-0.2816035507792589132304605014605
-0.095012509837637440185319335424958
0.095012509837637440185319335424958
0.2816035507792589132304605014605
0.45801677765722738634241944298358
0.61787624440264374844667176404879
0.75540440835500303389510119484744
0.86563120238783174388046789771239
0.94457502307323257607798841553461
0.98940093499164993259615417345033

0.027152459411754094851780572456018
0.062253523938647892862843836994378
0.095158511682492784809925107602246
0.12462897125553387205247628219202
0.14959598881657673208150173054748
0.16915651939500253818931207903036
0.18260341504492358886676366796922
0.18945061045506849628539672320828
0.18945061045506849628539672320828
0.18260341504492358886676366796922
0.16915651939500253818931207903036
0.14959598881657673208150173054748
0.12462897125553387205247628219202
0.095158511682492784809925107602246
0.062253523938647892862843836994378
0.027152459411754094851780572456018

17

-0.99057547531441733567543401994067
-0.9506755217687677612227169578958
-0.88023915372698590212295569448816
-0.78151400389680140692523005552048
-0.657671159216690765850302216643
-0.51269053708647696788624656862955
-0.35123176345387631529718551709535
-0.17848418149584785585067749365407
0
0.17848418149584785585067749365407
0.35123176345387631529718551709535
0.51269053708647696788624656862955
0.657671159216690765850302216643
0.78151400389680140692523005552048
0.88023915372698590212295569448816
0.9506755217687677612227169578958
0.99057547531441733567543401994067

0.024148302868547931960110026287565
0.055459529373987201129440165358245
0.085036148317179180883535370191062
0.11188384719340397109478838562636
0.13513636846852547328631998170235
0.15404576107681028808143159480196
0.16800410215645004450997066378832
0.1765627053669926463252709901132
0.17944647035620652545826564426189
0.1765627053669926463252709901132
0.16800410215645004450997066378832
0.15404576107681028808143159480196
0.13513636846852547328631998170235
0.11188384719340397109478838562636
0.085036148317179180883535370191062
0.055459529373987201129440165358245
0.024148302868547931960110026287565

18

-0.99156516842093094673001600470615
-0.95582394957139775518119589292978
-0.89260246649755573920606059112715
-0.80370495897252311568241745501459
-0.69168704306035320787489108128885
-0.55977083107394753460787154852533
-0.41175116146284264603593179383305
-0.25188622569150550958897285487791
-0.084775013041735301242261852935784
0.084775013041735301242261852935784
0.25188622569150550958897285487791
0.41175116146284264603593179383305
0.55977083107394753460787154852533
0.69168704306035320787489108128885
0.80370495897252311568241745501459
0.89260246649755573920606059112715
0.95582394957139775518119589292978
0.99156516842093094673001600470615

0.021616013526483310313342710266452
0.049714548894969796453334946202639
0.076425730254889056529129677616637
0.10094204410628716556281398492483
0.1225552067114784601845191268002
0.14064291467065065120473130375195
0.15468467512626524492541800383637
0.16427648374583272298605377646593
0.16914238296314359184065647013499
0.16914238296314359184065647013499
0.16427648374583272298605377646593
0.15468467512626524492541800383637
0.14064291467065065120473130375195
0.1225552067114784601845191268002
0.10094204410628716556281398492483
0.076425730254889056529129677616637
0.049714548894969796453334946202639
0.021616013526483310313342710266452

19

-0.99240684384358440318901767025326
-0.96020815213483003085277884068765
-0.90315590361481790164266092853231
-0.82271465653714282497892248671271
-0.72096617733522937861709586082378
-0.60054530466168102346963816494624
-0.4645707413759609457172671481041
-0.31656409996362983199011732884984
-0.16035864564022537586809611574074
0
0.16035864564022537586809611574074
0.31656409996362983199011732884984
0.4645707413759609457172671481041
0.60054530466168102346963816494624
0.72096617733522937861709586082378
0.82271465653714282497892248671271
0.90315590361481790164266092853231
0.96020815213483003085277884068765
0.99240684384358440318901767025326

0.019461788229726477036312041464438
0.044814226765699600332838157401994
0.069044542737641226580708258006013
0.09149002162244999946446209412384
0.11156664554733399471602390168177
0.12875396253933622767551578485688
0.1426067021736066117757461094419
0.15276604206585966677885540089766
0.15896884339395434764995643946505
0.16105444984878369597916362532092
0.15896884339395434764995643946505
0.15276604206585966677885540089766
0.1426067021736066117757461094419
0.12875396253933622767551578485688
0.11156664554733399471602390168177
0.09149002162244999946446209412384
0.069044542737641226580708258006013
0.044814226765699600332838157401994
0.019461788229726477036312041464438

20

-0.99312859918509492478612238847132
-0.96397192727791379126766613119728
-0.9122344282513259058677524412033
-0.83911697182221882339452906170152
-0.74633190646015079261430507035564
-0.63605368072651502545283669622629
-0.51086700195082709800436405095525
-0.37370608871541956067254817702493
-0.22778585114164507808049619536857
-0.076526521133497333754640409398838
0.076526521133497333754640409398838
0.22778585114164507808049619536857
0.37370608871541956067254817702493
0.51086700195082709800436405095525
0.63605368072651502545283669622629
0.74633190646015079261430507035564
0.83911697182221882339452906170152
0.9122344282513259058677524412033
0.96397192727791379126766613119728
0.99312859918509492478612238847132

0.017614007139152118311861962351853
0.040601429800386941331039952274932
0.062672048334109063569506535187042
0.083276741576704748724758143222046
0.10193011981724043503675013548035
0.11819453196151841731237737771138
0.13168863844917662689849449974816
0.14209610931838205132929832506716
0.14917298647260374678782873700197
0.1527533871307258506980843319551
0.1527533871307258506980843319551
0.14917298647260374678782873700197
0.14209610931838205132929832506716
0.13168863844917662689849449974816
0.11819453196151841731237737771138
0.10193011981724043503675013548035
0.083276741576704748724758143222046
0.062672048334109063569506535187042
0.040601429800386941331039952274932
0.017614007139152118311861962351853

21

-0.99375217062038950026024203593794
-0.9672268385663062943166222149077
-0.92009933415040082879018713371496
-0.85336336458331728364725063858757
-0.76843996347567790861587785130622
-0.66713880419741231930596666999034
-0.55161883588721980705901879672431
-0.42434212020743878357366888854379
-0.2880213168024010966007925160646
-0.14556185416089509093703098233869
0
0.14556185416089509093703098233869
0.2880213168024010966007925160646
0.42434212020743878357366888854379
0.55161883588721980705901879672431
0.66713880419741231930596666999034
0.76843996347567790861587785130623
0.85336336458331728364725063858756
0.92009933415040082879018713371497
0.96722683856630629431662221490769
0.99375217062038950026024203593794

0.016017228257774333324224616858403
0.036953789770852493799950668299422
0.057134425426857208283635826472357
0.076100113628379302017051653300256
0.093444423456033861553289741113883
0.10879729916714837766347457807013
0.12183141605372853419536717712572
0.13226893863333746178105257449678
0.13988739479107315472213342386758
0.14452440398997005906382716655375
0.14608113364969042719198514768337
0.14452440398997005906382716655375
0.13988739479107315472213342386758
0.13226893863333746178105257449678
0.12183141605372853419536717712574
0.1087972991671483776634745780701
0.09344442345603386155328974111395
0.076100113628379302017051653300153
0.057134425426857208283635826472488
0.036953789770852493799950668299287
0.016017228257774333324224616858503

22

-0.9942945854823992920730314211613
-0.97006049783542872712395098676527
-0.92695677218717400052069293925905
-0.86581257772030013653642563701938
-0.78781680597920816200427795540835
-0.69448726318668278005068983576226
-0.58764040350691159295887692763865
-0.46935583798675702640633071096641
-0.34193582089208422515814742042738
-0.20786042668822128547884653391955
-0.069739273319722221213841796118628
0.069739273319722221213841796118628
0.20786042668822128547884653391955
0.34193582089208422515814742042738
0.46935583798675702640633071096641
0.58764040350691159295887692763865
0.69448726318668278005068983576226
0.78781680597920816200427795540835
0.86581257772030013653642563701938
0.92695677218717400052069293925905
0.97006049783542872712395098676527
0.9942945854823992920730314211613

0.014627995298272200684991098047185
0.033774901584814154793302246865913
0.052293335152683285940312051273211
0.069796468424520488094961418930218
0.085941606217067727414443681372703
0.10041414444288096493207883783054
0.11293229608053921839340060742178
0.12325237681051242428556098615481
0.13117350478706237073296499253031
0.13654149834601517135257383123152
0.13925187285563199337541024834181
0.13925187285563199337541024834181
0.13654149834601517135257383123152
0.13117350478706237073296499253031
0.12325237681051242428556098615481
0.11293229608053921839340060742178
0.10041414444288096493207883783054
0.085941606217067727414443681372703
0.069796468424520488094961418930218
0.052293335152683285940312051273211
0.033774901584814154793302246865913
0.014627995298272200684991098047185

23

-0.99476933499755212352392571544557
-0.97254247121811523195602407682078
-0.93297108682601610234919698903842
-0.87675235827044166737815688593415
-0.80488840161883989215111840699678
-0.71866136313195019446162448374862
-0.6196098757636461563850973116496
-0.50950147784600754968979304786685
-0.39030103803029083142148887288061
-0.26413568097034493053386953828331
-0.13325682429846611093174268224177
0
0.13325682429846611093174268224177
0.26413568097034493053386953828331
0.39030103803029083142148887288061
0.50950147784600754968979304786685
0.6196098757636461563850973116496
0.71866136313195019446162448374862
0.80488840161883989215111840699678
0.87675235827044166737815688593415
0.93297108682601610234919698903842
0.97254247121811523195602407682078
0.99476933499755212352392571544557

0.013411859487141772081309493458615
0.030988005856979444310694219641885
0.048037671731084668571641071632034
0.064232421408525852127169615158911
0.079281411776718954922892524742043
0.092915766060035147477018617369765
0.10489209146454141007408618501474
0.11499664022241136494164351293396
0.12304908430672953046757840067201
0.12890572218808214997859533939979
0.13246203940469661737164246470332
0.13365457218610617535145711054584
0.13246203940469661737164246470332
0.12890572218808214997859533939979
0.12304908430672953046757840067201
0.11499664022241136494164351293396
0.10489209146454141007408618501474
0.092915766060035147477018617369765
0.079281411776718954922892524742043
0.064232421408525852127169615158911
0.048037671731084668571641071632034
0.030988005856979444310694219641885
0.013411859487141772081309493458615

24

-0.99518721999702136017999740970074
-0.97472855597130949819839199300817
-0.93827455200273275852364900170872
-0.8864155270044010342131543419822
-0.82000198597390292195394987266975
-0.74012419157855436424382810309998
-0.64809365193697556925249578691075
-0.54542147138883953565837561721837
-0.43379350762604513848708423191335
-0.31504267969616337438679329131981
-0.19111886747361630915863982075707
-0.064056892862605626085043082624745
0.064056892862605626085043082624745
0.19111886747361630915863982075707
0.31504267969616337438679329131981
0.43379350762604513848708423191335
0.54542147138883953565837561721837
0.64809365193697556925249578691075
0.74012419157855436424382810309998
0.82000198597390292195394987266975
0.8864155270044010342131543419822
0.93827455200273275852364900170872
0.97472855597130949819839199300817
0.99518721999702136017999740970074

0.012341229799987199546805667070037
0.028531388628933663181307815951878
0.044277438817419806168602748211338
0.059298584915436780746367758500109
0.073346481411080305734033615253117
0.086190161531953275917185202983743
0.097618652104113888269880664464247
0.10744427011596563478257734244661
0.11550566805372560135334448390678
0.12167047292780339120446315347626
0.12583745634682829612137538251118
0.1279381953467521569740561652247
0.1279381953467521569740561652247
0.12583745634682829612137538251118
0.12167047292780339120446315347626
0.11550566805372560135334448390678
0.10744427011596563478257734244661
0.097618652104113888269880664464247
0.086190161531953275917185202983743
0.073346481411080305734033615253117
0.059298584915436780746367758500109
0.044277438817419806168602748211338
0.028531388628933663181307815951878
0.012341229799987199546805667070037

25

-0.9955569697904980979087849468939
-0.97666392145951751149831538647959
-0.94297457122897433941401116965847
-0.8949919978782753688510420067828
-0.83344262876083400142102110869357
-0.75925926303735763057728286520436
-0.67356636847346836448512063324762
-0.57766293024122296772368984161265
-0.47300273144571496052218211500919
-0.36117230580938783773582173012764
-0.24386688372098843204519036279745
-0.12286469261071039638735981880804
0
0.12286469261071039638735981880804
0.24386688372098843204519036279745
0.36117230580938783773582173012764
0.47300273144571496052218211500919
0.57766293024122296772368984161265
0.67356636847346836448512063324762
0.75925926303735763057728286520436
0.83344262876083400142102110869357
0.8949919978782753688510420067828
0.94297457122897433941401116965847
0.97666392145951751149831538647959
0.9955569697904980979087849468939

0.011393798501026287947902964113235
0.026354986615032137261901815295299
0.040939156701306312655623487711646
0.054904695975835191925936891540473
0.068038333812356917207187185656708
0.080140700335001018013234959669111
0.091028261982963649811497220702892
0.10053594906705064420220689039269
0.10851962447426365311609395705012
0.11485825914571164833932554586956
0.1194557635357847722281781265129
0.12224244299031004168895951894585
0.12317605372671545120390287307905
0.12224244299031004168895951894585
0.1194557635357847722281781265129
0.11485825914571164833932554586956
0.10851962447426365311609395705012
0.10053594906705064420220689039269
0.091028261982963649811497220702892
0.080140700335001018013234959669111
0.068038333812356917207187185656708
0.054904695975835191925936891540473
0.040939156701306312655623487711646
0.026354986615032137261901815295299
0.011393798501026287947902964113235

26

-0.99588570114561692900321695932291
-0.97838544595647099110058035431193
-0.94715906666171425013591528351804
-0.90263786198430707421766559923121
-0.84544594278849801879750706146784
-0.77638594882067885619296724724228
-0.69642726041995726486381391372942
-0.60669229301761806323197874691689
-0.50844071482450571769570306472557
-0.40305175512348630648107737709888
-0.29200483948595689514283538207783
-0.17685882035689018396905774841834
-0.059230093429313207093718575198403
0.059230093429313207093718575198403
0.17685882035689018396905774841834
0.29200483948595689514283538207783
0.40305175512348630648107737709888
0.50844071482450571769570306472557
0.60669229301761806323197874691689
0.69642726041995726486381391372942
0.77638594882067885619296724724228
0.84544594278849801879750706146784
0.90263786198430707421766559923121
0.94715906666171425013591528351804
0.97838544595647099110058035431193
0.99588570114561692900321695932291

0.010551372617343007155651187685252
0.024417851092631908789615827519788
0.03796238329436276395030314124885
0.050975825297147811998319900724073
0.063274046329574835539453689907045
0.074684149765659745887075796102848
0.085045894313485239210447765079982
0.094213800355914148463664883067303
0.10205916109442542323841407025343
0.108471840528576590656579426728
0.1133618165463196665494407184426
0.11666044348529658204466250754036
0.11832141527926227651637108570047
0.11832141527926227651637108570047
0.11666044348529658204466250754036
0.1133618165463196665494407184426
0.108471840528576590656579426728
0.10205916109442542323841407025343
0.094213800355914148463664883067303
0.085045894313485239210447765079982
0.074684149765659745887075796102848
0.063274046329574835539453689907045
0.050975825297147811998319900724073
0.03796238329436276395030314124885
0.024417851092631908789615827519788
0.010551372617343007155651187685252

27

-0.99617926288898856693888720838123
-0.97992347596150122285587335566105
-0.95090055781470500685190803064388
-0.90948232067749110430064501820969
-0.85620790801829449030273722270684
-0.79177163907050822714439734410727
-0.71701347373942369929481621164234
-0.63290797194649514092773463763449
-0.54055156457945689490030094155998
-0.44114825175002688058597415568928
-0.33599390363850889973031903420728
-0.22645936543953685885723910736023
-0.11397258560952996693289498386998
0
0.11397258560952996693289498386998
0.22645936543953685885723910736023
0.33599390363850889973031903420728
0.44114825175002688058597415568928
0.54055156457945689490030094155998
0.63290797194649514092773463763449
0.71701347373942369929481621164234
0.79177163907050822714439734410727
0.85620790801829449030273722270684
0.90948232067749110430064501820969
0.95090055781470500685190803064388
0.97992347596150122285587335566105
0.99617926288898856693888720838123

0.0097989960512943602611500550912591
0.022686231596180623196034206446761
0.035297053757419711022578289304712
0.047449412520615062704096710114185
0.058983536859833599110300833719532
0.069748823766245592984322888356667
0.079604867773057771263074959009842
0.088423158543756950194322802853749
0.096088727370028507565652646558106
0.10250163781774579867124771153266
0.10757828578853318721216298442666
0.11125248835684519267216309604285
0.1134763461089651486203699480921
0.11422086737895698904504573690184
0.1134763461089651486203699480921
0.11125248835684519267216309604285
0.10757828578853318721216298442666
0.10250163781774579867124771153266
0.096088727370028507565652646558106
0.088423158543756950194322802853749
0.079604867773057771263074959009842
0.069748823766245592984322888356667
0.058983536859833599110300833719532
0.047449412520615062704096710114185
0.035297053757419711022578289304712
0.022686231596180623196034206446761
0.0097989960512943602611500550912591

28

-0.99644249757395444995043639048331
-0.98130316537087275369455994580783
-0.95425928062893819725410183970522
-0.91563302639213207386968942332993
-0.86589252257439504894225456737969
-0.80564137091717917144788595542528
-0.73561087801363177202814451029253
-0.65665109403886496121989817650674
-0.56972047181140171930800328335643
-0.47587422495511826103441184766743
-0.37625151608907871022135720955609
-0.27206162763517807767682635612577
-0.16456928213338077128147177789117
-0.05507928988403427042651652734188
0.05507928988403427042651652734188
0.16456928213338077128147177789117
0.27206162763517807767682635612577
0.37625151608907871022135720955609
0.47587422495511826103441184766743
0.56972047181140171930800328335643
0.65665109403886496121989817650674
0.73561087801363177202814451029253
0.80564137091717917144788595542528
0.86589252257439504894225456737969
0.91563302639213207386968942332993
0.95425928062893819725410183970522
0.98130316537087275369455994580783
0.99644249757395444995043639048331

0.0091242825930945177388161539229517
0.021132112592771259751500380993265
0.032901427782304379977630819170532
0.044272934759004227839587877653207
0.055107345675716745431482918226946
0.065272923966999595793397566775505
0.074646214234568779023931887173022
0.083113417228901218390396498244332
0.090571744393032840942186031336784
0.096930657997929915850489006095441
0.10211296757806076981421663850571
0.10605576592284641791041643699681
0.10871119225829413525357151930367
0.11004701301647519628237626560182
0.11004701301647519628237626560182
0.10871119225829413525357151930367
0.10605576592284641791041643699681
0.10211296757806076981421663850571
0.096930657997929915850489006095441
0.090571744393032840942186031336784
0.083113417228901218390396498244332
0.074646214234568779023931887173022
0.065272923966999595793397566775505
0.055107345675716745431482918226946
0.044272934759004227839587877653207
0.032901427782304379977630819170532
0.021132112592771259751500380993265
0.0091242825930945177388161539229517

29

-0.99667944226059658616319153254935
-0.98254550526141317487092601578638
-0.95728559577808772579820803698082
-0.92118023295305878509375343608311
-0.87463780492010279041779342125658
-0.81818548761525244498957221457878
-0.75246285173447713391261007721214
-0.67821453760268651515618500539199
-0.59628179713822782037958621118899
-0.50759295512422764210262791962752
-0.41315288817400866389070658603162
-0.31403163786763993494819592319105
-0.21135228616600107450637572890294
-0.10627823013267923017098239243038
0
0.10627823013267923017098239243038
0.21135228616600107450637572890294
0.31403163786763993494819592319105
0.41315288817400866389070658603162
0.50759295512422764210262791962752
0.59628179713822782037958621118899
0.67821453760268651515618500539199
0.75246285173447713391261007721214
0.81818548761525244498957221457878
0.87463780492010279041779342125658
0.92118023295305878509375343608311
0.95728559577808772579820803698082
0.98254550526141317487092601578638
0.99667944226059658616319153254935

0.0085169038787464096542638133022498
0.019732085056122705983859801640396
0.030740492202093622644408525374617
0.041402062518682836104830010114077
0.051594826902497923912594381179543
0.061203090657079138542109848023907
0.070117933255051278569581486948879
0.07823832713576378382814488865968
0.085472257366172527545344849297208
0.091737757139258763347966411077111
0.096963834094408606301900074882689
0.1010912737599149661218205469075
0.10407331007772937391332847128512
0.10587615509732094140659132785219
0.10647938171831424424651112690968
0.10587615509732094140659132785219
0.10407331007772937391332847128512
0.1010912737599149661218205469075
0.096963834094408606301900074882689
0.091737757139258763347966411077111
0.085472257366172527545344849297208
0.07823832713576378382814488865968
0.070117933255051278569581486948879
0.061203090657079138542109848023907
0.051594826902497923912594381179543
0.041402062518682836104830010114077
0.030740492202093622644408525374617
0.019732085056122705983859801640396
0.0085169038787464096542638133022498

30

-0.9968934840746495402716300509187
-0.98366812327974720997003258160566
-0.9600218649683075122168710255818
-0.92620004742927432587932427708047
-0.88256053579205268154311646253023
-0.8295657623827683974428981197325
-0.7677774321048261949179773409745
-0.69785049479331579693229238802664
-0.62052618298924286114047755643119
-0.53662414814201989926416979331107
-0.44703376953808917678060990032285
-0.35270472553087811347103720708937
-0.25463692616788984643980512981781
-0.15386991360858354696379467274326
-0.051471842555317695833025213166723
0.051471842555317695833025213166723
0.15386991360858354696379467274326
0.25463692616788984643980512981781
0.35270472553087811347103720708937
0.44703376953808917678060990032285
0.53662414814201989926416979331107
0.62052618298924286114047755643119
0.69785049479331579693229238802664
0.7677774321048261949179773409745
0.8295657623827683974428981197325
0.88256053579205268154311646253023
0.92620004742927432587932427708047
0.9600218649683075122168710255818
0.98366812327974720997003258160566
0.9968934840746495402716300509187

0.0079681924961666056154658834746736
0.018466468311090959142302131912047
0.028784707883323369349719179611292
0.038799192569627049596801936446348
0.048402672830594052902938140422808
0.057493156217619066481721689402056
0.065974229882180495128128515115962
0.073755974737705206268243850022191
0.08075589522942021535469493846053
0.086899787201082979802387530715126
0.092122522237786128717632707087619
0.09636873717464425963946862635181
0.099593420586795267062780282103569
0.10176238974840550459642895216855
0.10285265289355884034128563670542
0.10285265289355884034128563670542
0.10176238974840550459642895216855
0.099593420586795267062780282103569
0.09636873717464425963946862635181
0.092122522237786128717632707087619
0.086899787201082979802387530715126
0.08075589522942021535469493846053
0.073755974737705206268243850022191
0.065974229882180495128128515115962
0.057493156217619066481721689402056
0.048402672830594052902938140422808
0.038799192569627049596801936446348
0.028784707883323369349719179611292
0.018466468311090959142302131912047
0.0079681924961666056154658834746736

______________________

This post is brought to you by

Holistic Numerical Methods Open Course Ware:

Numerical Methods for the STEM undergraduate at http://nm.MathForCollege.com;

Introduction to Matrix Algebra for the STEM undergraduate at http://ma.MathForCollege.com

the textbooks on

Numerical Methods with Applications

Introduction to Programming Concepts Using MATLAB

the Massive Open Online Course (MOOCs) available at

Numerical Methods 

Introduction to Matrix Algebra

How do I do that in MATLAB

HOW DO I DO THAT IN MATLAB SERIES?

Solution to ordinary differential equations posed as definite integral

This blog is an example to show the use of second fundamental theorem of calculus in posing a definite integral as an ordinary differential equation.  This plays a prominent role in showing how we can use numerical methods of ordinary differential equations to conduct numerical integration.

This post is brought to you by

I thought Gaussian quadrature requires that the integral must be transformed to the integral limit of [-1,1]?

Question asked on YouTube: I thought Gaussian quadrature requires that the integral must be transformed to the integral limit of [-1,1]?

The answer is given below.

gaussquadlimits

The document in the above image is given here. This post is brought to you by

An example of Gaussian quadrature rule by using two approaches

Here is an example of using Gaussian quadrature rule through two approaches:

EITHER

by applying it on the original integrand by updating the argument of the integrand

OR

by applying it to the equivalent integrand because of the need to change the limits of integration to: -1 to 1.

http://nm.MathForCollege.com/blog/3pointquadruleexample.pdf

___________________

This post is brought to you by

A MATLAB program to find quadrature points and weights for Gauss-Legendre Quadrature rule

Recently, I got a request how one can find the quadrature and weights of a Gauss-Legendre quadrature rule for large n.  It seems that the internet has these points available free of charge only up to n=12.  Below is the MATLAB program that finds these values for any n.  I tried the program for n=25 and it gave results in a minute or so.  The results output up to 32 significant digits.
_______________________________________________________

% Program to get the quadrature points
% and weight for Gauss-Legendre Quadrature
% Rule
clc
clear all
syms x
% Input n: Quad pt rule
n=14;
% Calculating the Pn(x)
% Legendre Polynomial
% Using recursive relationship
% P(order of polynomial, value of x)
% P(0,x)=1; P(1,x)=0;
% (i+1)*P(i+1,x)=(2*i+1)*x*P(i,x)-i*P(i-1,x)
m=n-1;
P0=1;
P1=x;
for i=1:1:m
    Pn=((2.0*i+1)*x*P1-i*P0)/(i+1.0);
    P0=P1;
    P1=Pn;
end
if n==1
    Pn=P1;
end
Pn=expand(Pn);
quadpts=solve(vpa(Pn,32));
quadpts=sort(quadpts);
% Finding the weights
% Formula for weights is given at
% http://mathworld.wolfram.com/Legendre-GaussQuadrature.html
% Equation (13)
for k=1:1:n
    P0=1;
    P1=x;
    m=n;
    % Calculating P(n+1,x)
    for i=1:1:m
        Pn=((2.0*i+1)*x*P1-i*P0)/(i+1.0);
        P0=P1;
        P1=Pn;
    end
    Pn=P1;
    weights(k)=vpa(2*(1-quadpts(k)^2)/(n+1)^2/ …
                                   subs(Pn,x,quadpts(k))^2,32);
end
    fprintf(‘Quad point rule for n=%g \n’,n)
disp(‘  ‘)
disp(‘Abscissas’)
disp(quadpts)
disp(‘  ‘)
disp(‘Weights’)
disp(weights’)_______________________________________________________ 

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://numericalmethods.eng.usf.edu, the textbook on Numerical Methods with Applications available from the lulu storefront, the textbook on Introduction to Programming Concepts Using MATLAB, and the YouTube video lectures available at http://numericalmethods.eng.usf.edu/videos.  Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

Using int and solve to find inverse error function in MATLAB

In the previous post, https://autarkaw.wordpress.com/2010/08/24/finding-the-inverse-error-function/, we set up the nonlinear equation to find the inverse of error function.  Using the int and solve MATLAB commands, we write our own program to find the inverse error function.

It is better to download (right click and save target) the program as single quotes in the pasted version do not translate properly when pasted into a mfile editor of MATLAB or you can read the html version for clarity and sample output.

%% FINDING INVERSE ERROR FUNCTION
% In a previous blog at autarkaw.wordpress.com (August 24, 2010),
% we set up a nonlinear equation to find the inverse error function.
% In this blog, we will solve this equation.
% The problem is given at
% http://nm.mathforcollege.com/blog/inverseerror.pdf
% and we are solving Exercise 1 of the pdf file.

%% TOPIC
% Finding inverse error function

%% SUMMARY

% Language : Matlab 2010a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/inverse_erf_matlab.m;
% Last Revised : August 27, 2010
% Abstract: This program shows you how to find the inverse error function
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to’)
disp(‘   find the inverse error function’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of https://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/inverse_erf_matlab.m’)
disp(‘  ‘)
disp(‘PROBLEM STATEMENT’)
disp(‘   http://nm.mathforcollege.com/blog/inverseerror.pdf’)
disp(‘        Exercise 1’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   August 27, 2010’)
disp(‘ ‘)

%% INPUTS
% Value of error function
erfx=0.5;

%% DISPLAYING INPUTS

disp(‘INPUTS’)
fprintf(‘ The value of error function= %g’,erfx)
disp(‘  ‘)
disp(‘  ‘)

%% CODE
syms t x
inverse_erf=solve(int(2/sqrt(pi)*exp(-t^2),t,0,x)-erfx);
inverse_erf=double(inverse_erf);
%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘ Value of inverse error function from mfile is= %g’,inverse_erf)
fprintf(‘\n Value of inverse error function using erfinv is= %g’,erfinv(erfx))
disp(‘  ‘)

___________________________________________________

This post is brought to you by

Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com,
the textbook on Numerical Methods with Applications available from the lulu storefront,
the textbook on Introduction to Programming Concepts Using MATLAB, and
the YouTube video lectures available at http://nm.mathforcollege.com/videos

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

Finding the inverse error function

Inverse Error Function

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://numericalmethods.eng.usf.edu, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://numericalmethods.eng.usf.edu/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

A video tutorial on Simpson’s 1/3 rule

Simpson’s 1/3 rule is a popular method of conducting numerical integration.  We have recorded a series of short videos on this topic and they are avilable as a playlist at http://www.youtube.com/user/numericalmethodsguy#g/c/2A25C3DC6D8E5616.

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://numericalmethods.eng.usf.edu, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://numericalmethods.eng.usf.edu/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I integrate a discrete function in MATLAB?

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog, I show you how to integrate a discrete function.

The MATLAB program link is here.

The HTML version of the MATLAB program is here.

_____________________________________________________

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I integrate a discrete function?  Three cases of data are
% discussed.

%% SUMMARY

% Language : MATLAB 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/integrationdiscrete.m;
% Last Revised : April 3, 2009;
% Abstract: This program shows you how to integrate a given discrete function.

clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to integrate’)
disp(‘   a discrete function’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of https://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/integrationdiscrete.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   April 3, 2009’)
disp(‘ ‘)

%% CASE 1

%% INPUTS

% Integrate the discrete function y from x=1 to 6.5
% with y vs x data given as (1,2), (2,7), (4,16), (6.5,18)
% Defining the x-array
x=[1  2  4  6.5];
% Defining the y-array
y=[2  7  16  18];

%% DISPLAYING INPUTS
disp(‘____________________________________’)
disp(‘CASE#1’)
disp(‘LOWER LIMIT AND UPPER LIMITS OF INTEGRATION MATCH x(1) AND x(LAST)’)
disp(‘ ‘)
disp(‘INPUTS’)
disp(‘The x-data is’)
x
disp(‘The y-data is’)
y
fprintf(‘  Lower limit of integration, a= %g’,x(1))
fprintf(‘\n  Upper limit of integration, b= %g’,x(length(x)))
disp(‘ ‘)

%% THE CODE

intvalue=trapz(x,y);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)
disp(‘___________________________________________’)

%% CASE 2

%% INPUTS

% Integrate the discrete function y from x=3 to 6
% with y vs x data given as (1,2), (2,7), (4,16), (6.5,18)
% Defining the x-array
x=[1  2  4  6.5];
% Defining the y-array
y=[2  7  16  18];
% Lower limit of integration, a
a=3;
% Upper limit of integration, b
b=6;
%% DISPLAYING INPUTS

disp(‘CASE#2’)
disp(‘LOWER LIMIT AND UPPER LIMITS OF INTEGRATION DO not MATCH x(1) AND x(LAST)’)
disp(‘  ‘)
disp(‘INPUTS’)
disp(‘The x-data is’)
x
disp(‘The y-data is’)
y
fprintf(‘  Lower limit of integration, a= %g’,a)
fprintf(‘\n  Upper limit of integration, b= %g’,b)
% Choose how many divisions you want for splining from a to b
n=1000;
fprintf(‘\n  Number of subdivisions used for splining = %g’,n)
disp(‘  ‘)
disp(‘  ‘)

%% THE CODE

xx=a:(b-a)/n:b;
% Using spline to approximate the curve from x(1) to x(last)
yy=spline(x,y,xx);
intvalue=trapz(xx,yy);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)
disp(‘___________________________________________’)
%% CASE 3

%% INPUTS

% Integrate the discrete function y from x=1 to 6.5
% with y vs x data given as (1,2), (4,16), (2,7), (6.5,18)
% The x-data is not in ascending order
% Defining the x-array
x=[1  4   2 6.5];
% Defining the y-array
y=[2  16  7 18];
% Lower limit of integration, a
a=3;
% Upper limit of integration, b
b=6;
%% DISPLAYING INPUTS

disp(‘CASE#3’)
disp(‘LOWER LIMIT AND UPPER LIMITS OF INTEGRATION DO not MATCH x(1) AND x(LAST) ‘)
disp(‘AND X-DATA IS NOT IN ASCENDING OR DESCENDING ORDER’)
disp(‘   ‘)
disp(‘INPUTS’)
disp(‘The x-data is’)
x
disp(‘The y-data is’)
y
fprintf(‘  Lower limit of integration, a= %g’,a)
fprintf(‘\n  Upper limit of integration, b= %g’,b)
% Choose how many divisions you want for splining from a to b
n=1000;
fprintf(‘\n  Number of subdivisions used for splining = %g’,n)
disp(‘  ‘)
disp(‘  ‘)

%% THE CODE
[x,so] = sort(x); % so is the sort order
y = y(so); % y data is now in same order as x data
xx=a:(b-a)/n:b;
% Using spline to approximate the curve from x(1) to x(last)
yy=spline(x,y,xx);
intvalue=trapz(xx,yy);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)

____________________________________________________________

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.