The program to find the determinant of matrix


Here is the MATLAB program to find the determinant of a nxn matrix by the cofactor method.  I had to develop a separate function for each size of the matrix.  I may be wrong about having to do that – is there a single function that can be written to find the determinant of any nxn matrix using the cofactor method?

The mfile can be downloaded here.   Try the program for a 10×10 matrix – it took about 6 seconds of CPU time on my PC.  A 12×12 matrix determinant would take about 13 minutes of CPU time.  I stopped at a 12×12 matrix.  You can either write a function or generate the function via a program for matrices of 13×13 order and higher.

Contents

Finding the determinant of a matrix using the cofactor method

and comparing the CPU time with MATLAB det function

clc
clear all
format long

% n=Size of matrix
n=6;
% Choosing a matrix of nxn size with random numbers
A=rand(n,n);

% Calculating cputime by cofactor method
tbegin=cputime;
detval=det6(A);
TimeCrammer=cputime-tbegin;

% Calculating cputime by MATLAB det function
tbegin=cputime;
MatlabDet=det(A);
TimeMatlab=vpa(cputime-tbegin,32);

% Printing the times
fprintf('Size of matrix is %gx%g \n',n,n)
fprintf('Determinant by cofactor method = %g \n', detval)
fprintf('Determinant by Matlab function = %g \n', MatlabDet)
fprintf('Approximate CPU time taken by cofactor method = %g seconds\n',TimeCrammer)
fprintf('Approximate CPU time taken by MATLAB function = %e seconds\n',TimeMatlab)

Individual functions for determinant of a nxn matrix

function detvalue=det2(A)
detvalue=A(1,1)*A(2,2)-A(1,2)*A(2,1);
end

function detvalue=det3(A)
n=3;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det2(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det4(A)
n=4;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det3(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det5(A)
n=5;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det4(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det6(A)
n=6;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det5(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det7(A)
n=7;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det6(A(2:n,[1:j-1 j+1:n]));
end
end
function detvalue=det8(A)
n=8;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det7(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det9(A)
n=9;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det8(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det10(A)
n=10;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det9(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det11(A)
n=11;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det10(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det12(A)
n=12;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det11(A(2:n,[1:j-1 j+1:n]));
end
end
Size of matrix is 6x6 
Determinant by cofactor method = -0.0431 
Determinant by Matlab function = -0.0431 
Approximate CPU time taken by cofactor method = 0.140625 seconds
Approximate CPU time taken by MATLAB function = 1.562500e-02 seconds

The above mfile can be downloaded here.


This post is brought to you by

 

Advertisements

Author: Autar Kaw

Autar Kaw (http://autarkaw.com) is a Professor of Mechanical Engineering at the University of South Florida. He has been at USF since 1987, the same year in which he received his Ph. D. in Engineering Mechanics from Clemson University. He is a recipient of the 2012 U.S. Professor of the Year Award. With major funding from NSF, he is the principal and managing contributor in developing the multiple award-winning online open courseware for an undergraduate course in Numerical Methods. The OpenCourseWare (nm.MathForCollege.com) annually receives 1,000,000+ page views, 1,000,000+ views of the YouTube audiovisual lectures, and 150,000+ page views at the NumericalMethodsGuy blog. His current research interests include engineering education research methods, adaptive learning, open courseware, massive open online courses, flipped classrooms, and learning strategies. He has written four textbooks and 80 refereed technical papers, and his opinion editorials have appeared in the St. Petersburg Times and Tampa Tribune.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s