Advertisements

Implications of diagonally dominant matrices


In the previous blogs (Part 1, Part 2, Part 3, Part 4), we clarified the difference and similarities between diagonally dominant matrices, weakly diagonal dominant matrices, strongly diagonally dominant matrices, and irreducibly diagonally dominant matrices.  In this blog, we enumerate what implications these classifications have.

_____________________________

If a square matrix is strictly diagonally dominant

  • then the matrix is non-singular [1].
  • then if the matrix is symmetric with non-negative diagonal entries, the matrix is positive semi-definite [1].
  • then if the matrix is the coefficient matrix for a set of simultaneous linear equations, the iterative Gauss-Seidel numerical method will always converge [2].
  • then if the matrix is the coefficient matrix for a set of simultaneous linear equations, the iterative Jordan numerical method will always converge [2].
  • then if the diagonal entries of the matrix are positive, the real parts of the matrix eigenvalues are positive [1].
  • then if the diagonal entries of the matrix are negative, the real parts of the matrix eigenvalues are negative [1].
  • then if the matrix is column dominant, no pivoting is needed for Gaussian elimination [2].
  • then if the matrix is column dominant, no pivoting is needed for LU factorization [2].

_______________________________

If a square matrix is irreducible diagonally dominant

  1. then if the matrix is the coefficient matrix for a set of simultaneous linear equations, the iterative Gauss-Seidel numerical method will always converge.
  2. then if the matrix is the coefficient matrix for a set of simultaneous linear equations, the iterative Jordan numerical method will always converge.
  3. the matrix is non-singular [2].

________________________________

If a square matrix is diagonally dominant (also called weakly diagonally dominant)

  1. then if the matrix is column dominant, no pivoting is needed for Gaussian elimination [3].
  2. then if the matrix is column dominant, no pivoting is needed for LU factorization [3].

References

  1. Briggs, Keith. “Diagonally Dominant Matrix.” FromMathWorld–A Wolfram Web Resource, created by Eric W. Weisstein.  http://mathworld.wolfram.com/DiagonallyDominantMatrix.html
  1. Diagonally Dominant Matrix, see https://en.wikipedia.org/wiki/Diagonally_dominant_matrix, Last accessed on November 4, 2016.
  1. “Lecture 4: A Gaussian Elimination Example”, see http://www.cs.yale.edu/homes/spielman/BAP/lect4.pdf, last accessed on November 4, 2016.

_______________________________________

This post is brought to you by

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s