Rejecting roots of nonlinear equation for a physical problem?


To make the fulcrum of a bascule bridge, a long hollow steel shaft called the trunnion is shrink fit into a steel hub. The resulting steel trunnion-hub assembly is then shrink fit into the girder of the bridge. This is done by first immersing the trunnion in a cold medium such as dry-ice/alcohol mixture.  After the trunnion reaches the steady state temperature of the cold medium, the trunnion outer diameter contracts.  The trunnion is taken out of the medium and slid though the hole of the hub.   When the trunnion heats up, it expands and creates an interference fit with the hub.

bascule

In 1995, on one of the bridges in USA, this assembly procedure did not work as designed.  Before the trunnion could be inserted fully into the hub, the trunnion got stuck.  So a new trunnion and hub had to be ordered at a cost of $50,000.  Coupled with construction delays, the total loss was more than hundred thousand dollars.

Why did the trunnion get stuck?  This was because the trunnion had not contracted enough to slide through the hole.

Now the same designer is working on making the fulcrum for another bascule bridge.  Can you help him so that he does not make the same mistake?

For this new bridge, he needs to fit a hollow trunnion of outside diameter  in a hub of inner diameter .  His plan is to put the trunnion in dry ice/alcohol mixture (temperature of the fluid – dry ice/alcohol mixture is -108 degrees F) to contract the trunnion so that it can be slided through the hole of the hub.  To slide the trunnion without sticking, he has also specified a diametrical clearance of at least 0.01 inches  between the trunnion and the hub.   What temperature does he need to cool the trunnion to so that he gets the desired contraction?

For the solution of this problem click here

This post is brought to you by

Advertisements

Published by

Autar Kaw

Autar Kaw (http://autarkaw.com) is a Professor of Mechanical Engineering at the University of South Florida. He has been at USF since 1987, the same year in which he received his Ph. D. in Engineering Mechanics from Clemson University. He is a recipient of the 2012 U.S. Professor of the Year Award. With major funding from NSF, he is the principal and managing contributor in developing the multiple award-winning online open courseware for an undergraduate course in Numerical Methods. The OpenCourseWare (nm.MathForCollege.com) annually receives 1,000,000+ page views, 1,000,000+ views of the YouTube audiovisual lectures, and 150,000+ page views at the NumericalMethodsGuy blog. His current research interests include engineering education research methods, adaptive learning, open courseware, massive open online courses, flipped classrooms, and learning strategies. He has written four textbooks and 80 refereed technical papers, and his opinion editorials have appeared in the St. Petersburg Times and Tampa Tribune.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s