How do I solve a nonlinear equation that needs to be setup in MATLAB?


Many students ask me how do I do this or that in MATLAB. So I thought why not have a small series of my next few blogs do that. In this blog, I show you how to solve a nonlinear equation that needs to be set up.

For example to find the depth ‘x’ to which a ball is floating in water is based on the following cubic equation
4*R^3*S=3*x^2*(R-x/3)
where
R= radius of ball
S= specific gravity of ball
So how do we set this up if S and R are input values?

The MATLAB program link is here.

The HTML version of the MATLAB program is here.

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I solve a nonlinear equation if I need to set it up?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://numericalmethods.eng.usf.edu/blog/integration.m;
% Last Revised : March 28, 2009;
% Abstract: This program shows you how to solve a nonlinear equation
% that needs to set up as opposed that is just given to you.
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to solve’)
disp(‘   a nonlinear equation that needs to be setup’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of https://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://numericalmethods.eng.usf.edu/blog/nonlinearequation.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   April 17, 2009’)
disp(‘ ‘)

%% INPUTS
% Solve the nonlinear equation where you need to set up the equation
% For example to find the depth ‘x’ to which a ball is floating in water
% is based on the following cubic equation
% 4*R^3*S=3*x^2*(R-x/3)
% R= radius of ball
% S= specific gravity of ball
% So how do we set this up if S and R are input values

S=0.6
R=0.055
%% DISPLAYING INPUTS
disp(‘INPUTS’)
func=[‘  The equation to be solved is 4*R^3*S=3*x^2*(R-x/3)’];
disp(func)
disp(‘  ‘)

%% THE CODE
% Define x as a symbol
syms x
% Setting up the equation
C1=4*R^3*S
C2=3
f=[num2str(C1) ‘-3*x^2*(‘ num2str(R) ‘-x/3)’]
% Finding the solution of the nonlinear equation
soln=solve(f,x);
solnvalue=double(soln);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
for i=1:1:length(solnvalue)
fprintf(‘\nThe solution# %g is %g’,i,solnvalue(i))
end
disp(‘  ‘)

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://numericalmethods.eng.usf.edu, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://numericalmethods.eng.usf.edu/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

Advertisements

Published by

Autar Kaw

Autar Kaw (http://autarkaw.com) is a Professor of Mechanical Engineering at the University of South Florida. He has been at USF since 1987, the same year in which he received his Ph. D. in Engineering Mechanics from Clemson University. He is a recipient of the 2012 U.S. Professor of the Year Award. With major funding from NSF, he is the principal and managing contributor in developing the multiple award-winning online open courseware for an undergraduate course in Numerical Methods. The OpenCourseWare (nm.MathForCollege.com) annually receives 1,000,000+ page views, 1,000,000+ views of the YouTube audiovisual lectures, and 150,000+ page views at the NumericalMethodsGuy blog. His current research interests include engineering education research methods, adaptive learning, open courseware, massive open online courses, flipped classrooms, and learning strategies. He has written four textbooks and 80 refereed technical papers, and his opinion editorials have appeared in the St. Petersburg Times and Tampa Tribune.

One thought on “How do I solve a nonlinear equation that needs to be setup in MATLAB?”

  1. Now, Rohedi would add another example of nonlinear equation V*sqrt(1-x) – arctan(sqrt(x/(1-x))) – arctan(sqrt((a+x)/(1-x)))=m*pi, that maybe it can be solved using the above scheme. On the dispersion relation of optical modes for optical slab waveguide, both V and a are positive numbers, while the value of x for every integer m is in the range 0<x<1.

    For instance, what does the x value that satisfy 16*sqrt(1-x) – arctan(sqrt(x/(1-x))) – arctan(sqrt((1000+x)/(1-x)))=3*pi. Here we must use pi=3.141593, because optical wavelength used in designing optical waveguides is in micro meter.

    Best Regards,
    Rohedi.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s