Extrapolation is inexact and may be dangerous

The NASDAQ was booming – people were dreaming of riches – early retirement and what not. The year was 1999 and NASDAQ was at an all time high of 4069 on the last day of 1999.

The NASDAQ was booming – people were dreaming of riches – early retirement and what not. The year was 1999 and NASDAQ was at an all time high of 4069 on the last day of 1999.

Yes, Prince was right, not just about the purple rain, but – “‘Cuz they say two thousand zero zero party over, Oops out of time, So tonight I’m gonna party like it’s 1999 party like 1999.”

But as we know the party did not last too long. The dot com bubble burst and as we know it today (June 2008), the NASDAQ is hovering around 2400.

Year ………………NASDAQ on December 31st

1994………………………… 751

1995 ……………………….1052

1996 ………………………..1291

1997 ………………………..1570

1998 ………………………..2192

1999 ………………………..4069

• End of Year NASDAQ Composite Data taken from www.bigcharts.com

So how about extrapolating the value of NASDAQ to not too far ahead – just to the end of 2000 and 2001. This is what you obtain from using a 5th order interpolant for approximation from the above six values.

End of Year …Actual Value …..5th Order Poly Extrapo……………Abs Rel True Error
2000 ……………..2471…………………. 9128 ………………………………….. 269%
2001………………1950……………….. 20720 ………………………………….. 962%

Do you know what would be the extrapolated value of NASDAQ on June 30, 2008 -a whopping 861391! On June 30, 2008, compare it with the actual value.

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://numericalmethods.eng.usf.edu

Author: Autar Kaw

Autar Kaw (http://autarkaw.com) is a Professor of Mechanical Engineering at the University of South Florida. He has been at USF since 1987, the same year in which he received his Ph. D. in Engineering Mechanics from Clemson University. He is a recipient of the 2012 U.S. Professor of the Year Award. With major funding from NSF, he is the principal and managing contributor in developing the multiple award-winning online open courseware for an undergraduate course in Numerical Methods. The OpenCourseWare (nm.MathForCollege.com) annually receives 1,000,000+ page views, 1,000,000+ views of the YouTube audiovisual lectures, and 150,000+ page views at the NumericalMethodsGuy blog. His current research interests include engineering education research methods, adaptive learning, open courseware, massive open online courses, flipped classrooms, and learning strategies. He has written four textbooks and 80 refereed technical papers, and his opinion editorials have appeared in the St. Petersburg Times and Tampa Tribune.